Multi-peak solutions to two types of free boundary problems
نویسندگان
چکیده
منابع مشابه
Multi-peak Solutions to Two Types of Free Boundary Problems
We consider the existence of multi-peak solutions to two types of free bound ary problems arising in confined plasma and steady vortex pair under conditions on the nonlinearity we believe to be almost optimal. Our results show that the “core” of the solution has multiple connected components, whose boundary called free boundary of the problems consists approximately of spheres which shrink to ...
متن کاملMultiple Boundary Peak Solutions for Some Singularly Perturbed Neumann Problems
We consider the problem " 2 u ? u + f (u) = 0 in u > 0 in ; @u @ = 0 on @; where is a bounded smooth domain in R N , " > 0 is a small parameter and f is a superlinear, subcritical nonlinearity. It is known that this equation possesses boundary spike solutions such that the spike concentrates, as " approaches zero, at a critical point of the mean curvature function H(P); P 2 @. It is also known ...
متن کاملMulti-Level Adaptive Solutions to Boundary-Value Problems
The boundary-value problem is discretized on several grids (or finite-element spaces) of widely different mesh sizes. Interactions between these levels enable us (i) to solve the possibly nonlinear system of n discrete equations in 0(n) operations (40n additions and shifts for Poisson problems); (ii) to conveniently adapt the discretization (the local mesh size, local order of approximation, et...
متن کاملExistence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
متن کاملExistence of Nodal Solutions of Multi-point Boundary Value Problems
We study the nonlinear boundary value problem consisting of the equation y+w(t)f(y) = 0 on [a, b] and a multi-point boundary condition. By relating it to the eigenvalues of a linear Sturm-Liouville problem with a twopoint separated boundary condition, we obtain results on the existence and nonexistence of nodal solutions of this problem. We also discuss the changes of the existence of different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2014
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-014-0782-1